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. This paper presents a unified approach for the accurate extraction of

specific contact resistivity ( p, ) for ohmic contacts. Using 2-D simula-
tions, which account for the current flow, or crowding around the contact
window, we have analysed the resistance data obtined from the Cross
Bridge Kelvin Resistor, the Contact End Resistor, and the Transmission
Line Tap Resistor. For each particular structure, a sniversal set of curves
is derived that allows accurate determination of P, given the geometry of
the structure. The values obuained for 0. are independant of the test
structure type, its geometry and the contact area. The data suggests that
in the past researchers have overestimated p,, and that contact resistance
will not limit device performance even with submicron design rules.

INTRODUCTION

As MOS technology scales down into the submicron regime, it has
been believed that the series resistances contributed by the source/drain
contacts increase much more rapidly than the other resistance components
[1). This is because the contact resistance’s scaling approaches A2 for
small contacts {2), where A is the minimum feature size. To determine if
contact resistance is a limiting factor in the next generation ULSI, it is
paramount o obtain accurate values of the specific contact resistivity p.,
the physical parameter that governs the interfacial contact resistance
between the contact material and the diffusion. There are three test
sguctures commonly used to extract p.: the Cross Bridge Kelvin Resistor
(CBKR) [3], the Contact End Resistor (CER) (4], and the Transmission
Line Tap Resistor (TLTR) (5} as shown in Fig. 1. In all of these struc-
tures, a current is sourced from the diffusion level up into the metal level
via the contact window and a voltage is measured between the two levels
using two other terminals. The contact resistance for each structure is
simply this voltage divided by the source cumrent. It is important to real-
ize that each device measures the voltage at a different position along the
contact, hence the resistance values measured are different, and must be
clearly defined and distinguished from one another. In this paper, they
are referred ©0 as R, (Kelvin), R, (end), and R, (front) for the CBKR,
CER, and TLTR respectively.

There are two problems which make it very difficult to extract p,
accurately from the contact resistance measurements, using the present
theoretical 1-D equations (given in Fig. 1). The first problem is that
when these three structures are used to measure similar contacts, the
results often yield conflicting estimates of p.. The second problem is that
when contact resistance is plotted against area, a sublinear behavior is
observed for CBKR, instead of the expected inverse linear behavior {6-7).
The extracted values of p, not only appear to be area dependent, but also
a function of diffusion sheet resistance R, even though the active surface
dopant concentrations are the same. This is a serious problem since the
variations are often more than an order of magnitude. Previous work (8-
12] has auributed these phenomena to two-dimensional (2-D) current
flow, or crowding, in the diffusion-tap area around the contact window.
Those analyses partially explain these phenomena but do not explain how
o overcome the problem. Hence, there is a need for deeper understand-
ing and unified methodology. In this paper, a unified 2-D model is
presented which circumvents these shoricomings and provides an :
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explanation of the two phenomena. The novel extraction method derived
from the unified 2-D model provides values of p, which are accurate and
self-consistent independent of geometry and test structure types.

TWO-DIMENSIONAL MODEL

For relatively shallow junctons, a diffusion can be characterized com-
pletely by its sheet resistance. We shall concentrate here on semiconduc-
tor t0 metal contacts. Since the metal sheet resistance is much lower than
diffusion sheet resistance, metal is considered to be an equipotential
plane. Therefore the current flow in the diffusion-contact sysiem can be
described entirely by the potential in the diffusion “sheet” which is
governed by the Helmholtz equation:

in the diffusion area directly beneath the contact and by the Laplace
equation:

%+-§7V=0 @

elsewhere. The transfer length I, is defined as ( p. / R, )*; a length that
characterizes how far the current travels in the diffusion area beneath the
contact before passing into the metal level. For all three test structures, a
ratio between a measured potential ( V') and the source current (/)
gives a resistance R*. The resistance ratio R/ R, can be expressed as a
function of [, :

v
v
¥

()

R.
X 3

where d; is a line perpendicular to the current flow. Note that the
denominator represents the total current flowing into the contact window
divided by the sheet resistance. Using numerical techniques [13], we
have solved equations (1) and (2) to find V(x.y,!) for a wide ranging set
of test structure geometries. Then R° /R, is evaluated via the solution
of (3). By comparing the experimentally measured resistance ratio to the
one generated by the 2-D simulations using /; as a parameter, 2 unique
value of I, can be extracied and the accurate value of p. obtained for
each test structure. The use of /, allows contact resistivity and sheet
resistance to be lumped together as a single parameter, which reduces the
simulation task to one independent parameter for a specified test structure
geometry. The problem is further reduced by considering only the ratio
of measured resistance to sheet resistance.

EXTRACTION OF p, USING 2-D MODEL

In Fig. 2, the ratio of the Kelvin contact resistance R, to R, is
shown as a function of contact area for the CBKR structure. The overlap
§, which is the difference between the contact size and diffusion width is
maintained at 2.5 pm. The diagram shows the sublinear behavior in the
experimental data and an accurate prediction of it by the 2-D model.
The 1-D model predicts only a linear behavior (R, = p. / 1?) because it is
unable to account for current crowding effects. The diagram shows that
there is a large deviation from the 1-D model as /, is decreased. This is
due to a parasitic component added to the ideal value
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cusrrent crowding effects. This is more pronounced for large contact
areas and small values of I, For low p, and high R,, serious crowding
occurs and 2-D simulations are required to accurately model the behavior
of the data as shown. Good agreement between simulations and meas-
ured values implies accurate extraction of different {, for the metal (W,
Al PiSi) o N*/P* (B, P, As) diffusions, The results are summarized in
Table 1.

In Fig. 3 the 2-D model is compared to the 1-D model for the con-
tact end resistor where § is 2.5 pm. The 2-D model shows that the 1.D
model severely underestimates this resistance. This is due to curent
flowing around the overlap area and into the contact end. The error can
be as high as several orders of magnitude for low values of I, [14]. This
shows that when the 1-D equation for the CER is used to extract low p.
values, the true p, is overestimated by at least an order of magnitude.

To study the effect of the current flowing in the overlap region,
CER test structures were fabricated in which the diffusion-tap width w
was varied while the contact size is kept constant at S pm. The data and
simulations are shown in Fig.4. For curve 1, the value of R, is indepen-
dant of w, implying that the 1-D model is sufficient for this high value of
P But curves 2 and 3 show a strong dependance on w, which cannot be
accounted by the 1-D model Once more, the 2-D predictions track the
measured data accurately as shown. For PiSi to P diffusion (curve 2), the
extracted value of p, is § 2 jun?, which agrees with the CBKR value
obtained earlier on the same wafer. We have also extracted an identical
value of p, with the TLTR structure, and it is much lower than previ-
ously reported values.

The third structure to be examined, the TLTR, measures the "front”
resistance indirectly. The "front” .potential-- the contact potential near the
leading edge of the contact is larger than the potential on the side as
sensed by the CBKR and much larger than the contact end potential in
the CER case. Therefore, the 2-D crowding effect has much less impact
on the TLTR than the other two structures. In fact, it is possible to
design a TLTR which is essentially 1-D by making the contact width
much larger than its length. The effect of 2-D crowding on the front
resistance of square contacts is shown in Fig. 5. For these contacts, the
1-D model is off by less than an order of magnitude even for very low
values of I, signifying that the cwren! crowding effect is not serious for
this structure. Unforunately, the TLTR swucture introduces another
source of emor because it can only measure the front resistance
indirectly. The measured resistance is the sum of the front resistance and
series diffusion sheet resistance, and these two components must be iso-
lated by extrapolation techniyues.

The graphs displayed to this point are useful for extracting accurate
values of p.. By making several devices with different geometries, the
R. /R, ratios can be plotted on the appropriate curve, and p. can be

extracted. The consistency of the extracted p, values can and should be

used as a gauge o judge the validity of the experiment. So far, only one

geometric variable can be varied at a time in each study. In order to |

make possible the extraction of p. for a very wide range of design rules,
this constraint is removed in the next section.
1 .

r GENERALIZED EXTRACTIONS

If the dimensions of the test structures are normalized by dividing
each by a characteristic length L, then equations (1) and (2) will become:
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The general resistance ratio in equation (3) will still retain the same form

but the independent parameter is now =
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This shows that there is a simple scaling law which may be used o nor-
malize all of the above simulations:

R R 1 w
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R,( w.l) R.(LLL) a
where | and w are the contact length and diffusion width, respectively.
The characteristic length L can be any one of the geometric variables
used to define the dimensions of the contact structures. A convenient L
would be the overlap & because it is not varied over a large range.

This scaling law allows ail of the previous simulations to be nor-
malized, providing three sets of generalized curves. (It is still necessary

to differentdate between front, end, and Kelvin resistance.) These curves
eliminate the need for further 2-D simulations since all practical dimen-
sions of contacts and diffusions, and all contact-resistivites and diffusion
sheet resistances are conmtained in one diagram. The application is .
demonstrated in Fig. 6. The resistance ratio is plotted against the dimen- !
sionless ratio !/ 8 with parameter I,/ 8. When 1, > 8§, the behavior is
essentially 1-D and the curves are straight But as /, decreases below 8, !
the 2-D current crowding effect becomes significant, especially in the
cases of large contacts. The extraction accuaracy in this case is rather
low as is shown in the close packing of the curves in this regime of low
P As contact size shrinks, the curves spread out more evenly and the
extraction accuracy is improved. Also note that the effect of reduced §
results in improved accuracy.

The generality of the universal curves is demonstrated in Fig. 7.
The 2-D simulations and experimental data of two sets of CBKR's fabri-
cated on the same wafer with only a difference in & (1.25 pum, 2.5 um)
are shown. The extracted /, is the same (0.5 um), indicating once more
that p, is independent of geometry of test structure.

A similar set of universal curves for CER is shown in Fig. 8. The
main difference is that the values of the contact resistance are lower than
those of CBKR. This requires measurement of significantly smaller vol-
tages if current densities are kept the same. Furthermore, the resistance
ratio decreases rapidly as & increases and thus the sensitivity of the
varaiation in § is high. This is because the end contact potental is a
strong function of [,/ I,

The TLTR is far less sensitive to 8 because it detects the front con-
tact potential. Although the solid lines in Fig. 9 indicate that the TLTR
has slightly less geometric sensitivities than the CBKR, there is another
source of error caused by the indirect measurement method in extrapola-
tion of the contact resistance from the resistance between two close con-
tacts as shown in Fig. 1. When R, is large, the extrapolation becomes
quite difficult and sensitive to small variations in the separation distance
between the contacts. But the next example will demonstrate that with
careful electrical and optical measurements the universal extraction
curves yield an accurate value of p.. The R,/R, values of the TLTR
devices on a single wafer were measured using separation distances and
overlaps measured by optical and electrical techniques. The data was
then plotted as symbols along with the universal curves in Fig. 9. At first
glance, the data points appear scattered and poorly fitted 10 any single
curve. But by estimating the value of /,/ 8 and then multiplying this by
the measured value of 8, these data points all give p, values within 20%
of each other. This agreement further strengthens the validity of the gen-
eralized method. Using this technique we have ed p, for PSi, W
and Al contacts o N* and P* Si for a wide range of dopant concentra-
tion. The datailed results will be presented.

CONCLUSIONS

We have developed a technique which allows accurate and unambi-
guous determination of contact fesistivity even at low values. In the
examples illustrated, this technique repeatedly yields the same value of p,
for a wide variety of contact dimensions and test structures on a single
wafer. The results of the 2-D mode! are presented in a universal form so
that they may be used for extractions without performing any addinonal
simulavons. The new model points out that the 1-D model senously
overesumates the specific contact resistance due to 2-D current crowding
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in the overlap region. This implies that most reported values of p,
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extracted by using the 1-D method are overestimated, and that p, will not

be a limiting factor for ULSIL.
ACKNOWLEDGEMENTS

This work was supported through SRC contact MST 84-01-046, . \
Electric Power Research Inst. congact RP 7902 and JSEP contract AL S
DAAG 29-85-K-0048. Valuable suggestions from Dr. G. Bronner and

Dr. J. Marshall are gratefully acknowledged.
i

2-D SIMULATIONS |
005064 EXPERIMENTAL !

S=25

REFERENCES

[1] W. Fichtoer, IEDM 82 Tech. Dig., SF, p. 638

{2] R. H. Dennard et al., [EEE JSSC vol. 9-5, p. 256, Oct. 74.
[3] S. J. Proctor et al, IEEE TED 30-11, p. 1535, Nov. 83.
[4) J. Chern et al,, IEEE EDL-S, p. 178, May 84.

{5] H. H. Berger, ECS Journal 1194, p. 507, Apr. 72.

[6] R. L. Maddox, TED 32-3, p. 682, Mar. 85.

[7] 3. M. Ford, IEEE TED 32-4, p. 8402, Apr. 85.

[8) M. Finewi et al, [EEE EDL 5-12, p. 524, Dec. 84.

log (Ax/Rs)

3 L L
1 2 3 :
log (CONTACT AREA IN um?) '

Fig. 2 The ratio of Kelvin contact resistance to diffusion sheet resistance plotted
a3 a funcrion of contact area for ditfercnt transfer length /, for CBKR with over-
lap being 2.5 um. Symbols denote measured data. solid lines are simuiations. !

1
~— 2-D model with § =25
[9] W. M. Loh et al,, [EEE EDL 6-3, p. 105, Mar. 85. i "':‘;’u:' with § nm ia
{10) M. Finetti et al., IEEE Electron EDL 6-4, p. 184, Apr. 8S. of &I‘
{111 N. P. Armswoang et al., VLS! Multilevel interconnecton Confer-
ence, Santa Clara, p. 389, June 85. r leie] ¥
{121 W. M. Loh et al., IEEE EDL 6-9, p. 441, Scpt. 85. Lo
{13] M. Pinto et al., Stanford Elec. Lab Tech. Rep.. Oct. 84. 270\
{14} S. E Swirhun et al., submined to EDL. & 2 '
- [ A
S [a]
. -4 \
; - { \ - © Pe=1x106Nem?
i \ N & p.=1x107 Qem?
- Sk \ AN O P = 1x10%Qcm?
oo ‘ . \\ N, @ P 1x10%0cm?
] 1 N\
(I I ‘ -6 \ \ N
4 H 1 \ S
1 7 Loy TETS B | TIPS
' ' 0 1 2 3 4 S5 6 71 8 9 10 :
________ 2} Contact length ( um) ;
L Fig. 3 Simulated end contact resistance for the CER strucrure with square con-
@ T ! tact holes. Lines and symbols both denote simulations only. Solid lines are the .

1, =64 um

Fig. 1 The three test struc-

1
I
!
1
i
|
1
{
100!
|
|
'
t
]
!
]
1
1
|
[/

- r H Fo=c-- ) tures used for measunng - Pe = SE-8 Qcm?

‘ ! ! . ! ! cootact  resistance.  (a) = 2

' 1 : ' 2 ' HEE ' CrossCBBr;'g];c Kelvin Resis- < [ 3

' tor ). (b) Cootact 10
[ 4 [ - 8 4 «
: [. 1l :_‘ ': r $nd Resistor (CER). (c) - 9 }, =43 um
T T T R £ ;
L H H 3 3 e =69E-8
- Tt Ty oge-dimensional (1-D) for- e e
T T [P : B mulas for extracting specific 107
! Jv HY RS contact  resistivity  are
w X je—1, - a— L —=t X[t shown.
! ' ' . ' [l —

l ', _ ' o ) | @is pm Fig. 4 End resis-
e H : : :.. Vi Vi 103k tance as a function
P [ (-2 ~ s em | O diffusion wadth
: 4 : o IR P I 1 [ for constant con.

I e :__, .": :" i 7] 2(h-4) ‘ lsacl size of 5 pm,

E « Vos o Ve - YR, 104 L =cy:3°ls mm?;e

' : H ! ! i St T ' 10020 30 40 50 80 70 menis; himce ae

[ L bemmud " W (um) 2-D simulations.

I
ALL NMATCRIAL (N THIS GPAC
PR
5 Ll ] ,

- - R S I SRR
‘* “hh -.4‘\ - .;\".'- )

- < 2-D modei; dashed lines are the 1-D model. :
lof~= === F] ' '
—i
=" e |
: Rt l:
Y ¢ b [ I, =215 um
H B
€ METAL a ) E . E Pe = L1E—4 Qcm?
- v, O CIFFUSION . |
® R,,-—l'—'-—'ilz & CONTACT ———— teeld 10! —o-1
2 ) R, = & N L7 [
“la wseh(yR,ip, 1) L
i
i
1

v




77% RED MODF1 PAPFER £ 2

" Table 1 Summary of extraction results for the data shown in Fig. 2. ¢ ‘ .
' 1/ 8y = 0.41 k
R !, 632125 um i
» Num. | Metal | Dopant ’ ' Pe 1 03:25 : m '
(QVsq.) | (wm) | (Qum') = !
« hao/ 822019
1 w As 422 35 | 3500 -
k) . —
2 w B 714 2.75 540 2 oL
2 3 Al B 124 14 243
: 4 | Al B 71 | 09 576 w
T - . 1 1
X 5 | Pi P 12.1 0.65 s.11 S " 2
- 6 | W As 444 | 05 111 log (8) ;
Fig. 7 llustration of the use of the CBKR umversal curve to eatract 1, from
structures with different overlap & on the same water. {, = 0 Sum for alt poimts.
a 1
- —— 2-Dmodelwith § =25 um
- ' === 1-D mocel _—LS'
" \)
S L¢/8 = 0567 1¢8 =113
1¢/8 =02358
ol!vd =0179
., - > 0.113
. c 0057
: < 0.018
) ~-l
> g g I
- e
’ g
. <10 - =-2F
x 108 '
x
’ x 3
- .3 1 Ll y [N [ TN -3F
- _ 0 1 2 3 4 5 6 7 8 ] 10
A Contact length (um)
N -4 : : :
o Fig. 5 Simulated front contact resistance for the TLTR structure with square con. -1 . 0 1
tact holes. Lines and symbols both denote simulations only. Solid lioes are the log (1/8) |
2-D modei; dashed hines are the 1-D model. |
' Fig.8 Generahzed uruversal curves for the CER. Curves show I,/ 8 approxi-
. mately 1n octave sieps. 1
o | 3 1
~ € ateac ten
/3 =90 _L Sv'“!'m!s‘..m"v\\ ’ ‘.‘:"G
s ; V3 Jaeeivan
- 2 1
a /8 =45
- °F
B 1
: g (‘z:‘ ST
. b o
N o g
ped o
9 1
N
. -1 N ~ N '
¢ [ ™~
% /8 = 0034 -~ ‘ \'1
3 [ -
4 2 I h N I
.2 L N '
3 4 -1 Y 1
-1 0 1 2 log(t/8)
. log (7 8)
. Fig.y Generalized universal curves for the TI TR Curves show / & o i
. Fig. 6 Generalized uruversal curves for the CBKR. Curves show /,/ 8 1n octave mate octave stepy Symbols show data tom d(m;‘ o :h!» L ‘lan".:r:r:;; ‘ng 4
steps. i have a vanety af averlap sizes or )
g
- S e PR [ iot youial
[ ’ ( /
: L} ) \ l / !







